The opinion of scientists about parallel universe - Many-worlds interpretation

The opinion of scientists about parallel universe


To the average person, quantum mechanics is the convoluted, science fiction-y branch of physics. A radical new theory plays into that, proposing that parallel universes exist and interact with each other ‒ and that scientists may be able to test for them.

The opinion of scientists about parallel universe




The many-worlds interpretation is an interpretation of quantum mechanics that asserts the objective reality of the universal wavefunction and denies the actuality of wavefunction collapse. Many-worlds implies that all possible alternate histories and futures are real, each representing an actual "world" (or "universe"). In layman's terms, the hypothesis states there is a very large—perhaps infinite—number of universes, and everything that could possibly have happened in our past, but did not, has occurred in the past of some other universe or universes. The theory is also referred to as MWI, the relative state formulation, the Everett interpretation, the theory of the universal wavefunction, many-universes interpretation, multi-history or just many-worlds.

The original relative state formulation is due to Hugh Everett in 1957. Later, this formulation was popularized and renamed many-worlds by Bryce Seligman DeWitt in the 1960s and 1970s. The decoherence approaches to interpreting quantum theory have been further explored and developed, becoming quite popular. MWI is one of many multiverse hypotheses in physics and philosophy. It is currently considered a mainstream interpretation along with the other decoherence interpretations, collapse theories (including the historical Copenhagen interpretation), and hidden variable theories such as the Bohmian mechanics.

Before many-worlds, reality had always been viewed as a single unfolding history. Many-worlds, however, views historical reality as a many-branched tree, wherein every possible quantum outcome is realised. Many-worlds reconciles the observation of non-deterministic events, such as random radioactive decay, with the fully deterministic equations of quantum physics.

In many-worlds, the subjective appearance of wavefunction collapse is explained by the mechanism of quantum decoherence, and this is supposed to resolve all of the correlation paradoxes of quantum theory, such as the EPR paradox and Schrödinger's cat, since every possible outcome of every event defines or exists in its own "history" or "world".

Origin - Many-worlds interpretation

In Dublin in 1952 Erwin Schrödinger gave a lecture in which at one point he jocularly warned his audience that what he was about to say might "seem lunatic". He went on to assert that when the equation that won him a Nobel prize seems to be describing several different histories, they are "not alternatives but all really happen simultaneously". This is the earliest known reference to the many-worlds.

Outline - Many-worlds interpretation

Although several versions of many-worlds have been proposed since Hugh Everett's original work, they all contain one key idea: the equations of physics that model the time evolution of systems without embedded observers are sufficient for modelling systems which do contain observers; in particular there is no observation-triggered wave function collapse which the Copenhagen interpretation proposes. Provided the theory is linear with respect to the wavefunction, the exact form of the quantum dynamics modelled, be it the non-relativistic Schrödinger equation, relativistic quantum field theory or some form of quantum gravity or string theory, does not alter the validity of MWI since MWI is a metatheory applicable to all linear quantum theories, and there is no experimental evidence for any non-linearity of the wavefunction in physics. MWI's main conclusion is that the universe (or multiverse in this context) is composed of a quantum superposition of very many, possibly even non-denumerably infinitely many, increasingly divergent, non-communicating parallel universes or quantum worlds.

The idea of MWI originated in Everett's Princeton Ph.D. thesis "The Theory of the Universal Wavefunction", developed under his thesis advisor John Archibald Wheeler, a shorter summary of which was published in 1957 entitled "Relative State Formulation of Quantum Mechanics" (Wheeler contributed the title "relative state"; Everett originally called his approach the "Correlation Interpretation", where "correlation" refers to quantum entanglement). The phrase "many-worlds" is due to Bryce DeWitt, who was responsible for the wider popularisation of Everett's theory, which had been largely ignored for the first decade after publication. DeWitt's phrase "many-worlds" has become so much more popular than Everett's "Universal Wavefunction" or Everett–Wheeler's "Relative State Formulation" that many forget that this is only a difference of terminology; the content of both of Everett's papers and DeWitt's popular article is the same.

The many-worlds interpretation shares many similarities with later, other "post-Everett" interpretations of quantum mechanics which also use decoherence to explain the process of measurement or wavefunction collapse. MWI treats the other histories or worlds as real since it regards the universal wavefunction as the "basic physical entity" or "the fundamental entity, obeying at all times a deterministic wave equation". The other decoherent interpretations, such as consistent histories, the Existential Interpretation etc., either regard the extra quantum worlds as metaphorical in some sense, or are agnostic about their reality; it is sometimes hard to distinguish between the different varieties. MWI is distinguished by two qualities: it assumes realism, which it assigns to the wavefunction, and it has the minimal formal structure possible, rejecting any hidden variables, quantum potential, any form of a collapse postulate (i.e., Copenhagenism) or mental postulates (such as the many-minds interpretation makes).

Decoherent interpretations of many-worlds using einselection to explain how a small number of classical pointer states can emerge from the enormous Hilbert space of superpositions have been proposed by Wojciech H. Zurek. "Under scrutiny of the environment, only pointer states remain unchanged. Other states decohere into mixtures of stable pointer states that can persist, and, in this sense, exist: They are einselected." These ideas complement MWI and bring the interpretation in line with our perception of reality.

Many-worlds is often referred to as a theory, rather than just an interpretation, by those who propose that many-worlds can make testable predictions (such as David Deutsch) or is falsifiable (such as Everett) or by those who propose that all the other, non-MW interpretations, are inconsistent, illogical or unscientific in their handling of measurements; Hugh Everett argued that his formulation was a metatheory, since it made statements about other interpretations of quantum theory; that it was the "only completely coherent approach to explaining both the contents of quantum mechanics and the appearance of the world." Deutsch is dismissive that many-worlds is an "interpretation", saying that calling it an interpretation "is like talking about dinosaurs as an 'interpretation' of fossil records."

Interpreting wavefunction collapse

As with the other interpretations of quantum mechanics, the many-worlds interpretation is motivated by behavior that can be illustrated by the double-slit experiment. When particles of light (or anything else) are passed through the double slit, a calculation assuming wave-like behavior of light can be used to identify where the particles are likely to be observed. Yet when the particles are observed in this experiment, they appear as particles (i.e., at definite places) and not as non-localized waves.
Some versions of the Copenhagen interpretation of quantum mechanics proposed a process of "collapse" in which an indeterminate quantum system would probabilistically collapse down onto, or select, just one determinate outcome to "explain" this phenomenon of observation. Wavefunction collapse was widely regarded as artificial and ad hoc, so an alternative interpretation in which the behavior of measurement could be understood from more fundamental physical principles was considered desirable.
Everett's Ph.D. work provided such an alternative interpretation. Everett stated that for a composite system – for example a subject (the "observer" or measuring apparatus) observing an object (the "observed" system, such as a particle) – the statement that either the observer or the observed has a well-defined state is meaningless; in modern parlance, the observer and the observed have become entangled; we can only specify the state of one relative to the other, i.e., the state of the observer and the observed are correlated after the observation is made. This led Everett to derive from the unitary, deterministic dynamics alone (i.e., without assuming wavefunction collapse) the notion of a relativity of states.
Everett noticed that the unitary, deterministic dynamics alone decreed that after an observation is made each element of the quantum superposition of the combined subject–object wavefunction contains two "relative states": a "collapsed" object state and an associated observer who has observed the same collapsed outcome; what the observer sees and the state of the object have become correlated by the act of measurement or observation. The subsequent evolution of each pair of relative subject–object states proceeds with complete indifference as to the presence or absence of the other elements, as if wavefunction collapse has occurred, which has the consequence that later observations are always consistent with the earlier observations. Thus the appearance of the object's wavefunction's collapse has emerged from the unitary, deterministic theory itself. (This answered Einstein's early criticism of quantum theory, that the theory should define what is observed, not for the observables to define the theory). Since the wavefunction merely appears to have collapsed then, Everett reasoned, there was no need to actually assume that it had collapsed. And so, invoking Occam's razor, he removed the postulate of wavefunction collapse from the theory.

The unreal/real interpretation

According to Martin Gardner, the "other" worlds of MWI have two different interpretations: real or unreal; he claims that Stephen Hawking and Steven Weinberg both favour the unreal interpretation. Gardner also claims that the nonreal interpretation is favoured by the majority of physicists, whereas the "realist" view is only supported by MWI experts such as Deutsch and Bryce DeWitt. Hawking has said that "according to Feynman's idea", all the other histories are as "equally real" as our own, and Martin Gardner reports Hawking saying that MWI is "trivially true". In a 1983 interview, Hawking also said he regarded the MWI as "self-evidently correct" but was dismissive towards questions about the interpretation of quantum mechanics, saying, "When I hear of Schrödinger's cat, I reach for my gun." In the same interview, he also said, "But, look: All that one does, really, is to calculate conditional probabilities—in other words, the probability of A happening, given B. I think that that's all the many worlds interpretation is. Some people overlay it with a lot of mysticism about the wave function splitting into different parts. But all that you're calculating is conditional probabilities." Elsewhere Hawking contrasted his attitude towards the "reality" of physical theories with that of his colleague Roger Penrose, saying, "He's a Platonist and I'm a positivist. He's worried that Schrödinger's cat is in a quantum state, where it is half alive and half dead. He feels that can't correspond to reality. But that doesn't bother me. I don't demand that a theory correspond to reality because I don't know what it is. Reality is not a quality you can test with litmus paper. All I'm concerned with is that the theory should predict the results of measurements. Quantum theory does this very successfully." For his own part, Penrose agrees with Hawking that QM applied to the universe implies MW, although he considers the current lack of a successful theory of quantum gravity negates the claimed universality of conventional QM.

Similarities with the de Broglie–Bohm interpretation


Kim Joris Boström has proposed a non-relativistic quantum mechanical theory that combines elements of the de Broglie–Bohm mechanics and that of Everett’s many-‘worlds’. In particular, the unreal MW interpretation of Hawking and Weinberg is similar to the Bohmian concept of unreal empty branch ‘worlds’:

The second issue with Bohmian mechanics may at first sight appear rather harmless, but which on a closer look develops considerable destructive power: the issue of empty branches. These are the components of the post-measurement state that do not guide any particles because they do not have the actual configuration q in their support. At first sight, the empty branches do not appear problematic but on the contrary very helpful as they enable the theory to explain unique outcomes of measurements. Also, they seem to explain why there is an effective “collapse of the wavefunction”, as in ordinary quantum mechanics. On a closer view, though, one must admit that these empty branches do not actually disappear. As the wavefunction is taken to describe a really existing field, all their branches really exist and will evolve forever by the Schrödinger dynamics, no matter how many of them will become empty in the course of the evolution. Every branch of the global wavefunction potentially describes a complete world which is, according to Bohm’s ontology, only a possible world that would be the actual world if only it were filled with particles, and which is in every respect identical to a corresponding world in Everett’s theory. Only one branch at a time is occupied by particles, thereby representing the actual world, while all other branches, though really existing as part of a really existing wavefunction, are empty and thus contain some sort of “zombie worlds” with planets, oceans, trees, cities, cars and people who talk like us and behave like us, but who do not actually exist. Now, if the Everettian theory may be accused of ontological extravagance, then Bohmian mechanics could be accused of ontological wastefulness. On top of the ontology of empty branches comes the additional ontology of particle positions that are, on account of the quantum equilibrium hypothesis, forever unknown to the observer. Yet, the actual configuration is never needed for the calculation of the statistical predictions in experimental reality, for these can be obtained by mere wavefunction algebra. From this perspective, Bohmian mechanics may appear as a wasteful and redundant theory. I think it is considerations like these that are the biggest obstacle in the way of a general acceptance of Bohmian mechanics.

Many-worlds in literature and science fiction

Many-worlds in literature and science fiction
A map from Robert Sobel's novel For Want of a Nail, an artistic illustration of how small events – in this example the branching or point of divergence from our timeline's history is in October 1777 – can profoundly alter the course of history. According to the many-worlds interpretation every event, even microscopic, is a branch point; all possible alternative histories actually exist.

The many-worlds interpretation (and the somewhat related concept of possible worlds) has been associated to numerous themes in literatureart and science fiction.
Some of these stories or films violate fundamental principles of causality and relativity, since the information-theoretic structure of the path space of multiple universes (that is, information flow between different paths) is very likely complex.
Another kind of popular illustration of many-worlds splittings, which does not involve information flow between paths, or information flow backwards in time considers alternate outcomes of historical events. According to the many-worlds interpretation, all of the historical speculations entertained within the alternate history genre are realized in parallel universes.
The many-worlds interpretation of reality was anticipated with remarkable fidelity in Olaf Stapledon's 1937 science fiction novel Star Maker, in a paragraph describing one of the many universes created by the Star Maker god of the title. "In one inconceivably complex cosmos, whenever a creature was faced with several possible courses of action, it took them all, thereby creating many distinct temporal dimensions and distinct histories of the cosmos. Since in every evolutionary sequence of the cosmos there were very many creatures, and each was constantly faced with many possible courses, and the combinations of all their courses were innumerable, an infinity of distinct universes exfoliated from every moment of every temporal sequence in this cosmos."
Star Trek uses many-worlds in many stories. In the Original Series, Spock and Kirk make a crossover into a mirror universe and encounter versions of themselves from the other universe. In an episode of Star Trek: The Next Generation, Worf crosses over into a parallel universe while piloting a shuttlecraft and manages to encounter several other universes. The TNG finale "All Good Things" uses the concept heavily as Picard jumps between times. This is continued in Star Trek: Deep Space 9 with the episodes arching between the Terran empire and the Alliance, where Sisko and Kira also find mirror versions of themselves and other characters who are currently dead in the central universe, or dead in the parallel universe.
The author Neal Stephenson drew on the many-worlds theory for some aspects of his 2008 novel Anathem.
A more recent iteration, Rick and Morty on the channel Adult Swim, uses the many-worlds interpretation as a basis for the occurrences in the show. The cartoon also makes an allusion to Schrödinger's Cat in an episode in which they split their existence into two hypothetical, equally possible existences.
In episode 5 of the Netflix series, Stranger Things, the protagonists' middle school teacher Scott Clarke specifically mentions the many-worlds theory when asked about the possibility of "theoretical" alternate dimensions.

-------------

The Quantum Key By Aaron Murakami - Energy & Potential Mastery!


Get Your * Black Belt * In Taboo Physics. Learn What The Consciousness And Quantum Gurus Wont Tell You Because They Dont Know! Take The Red Pill - Wake Up In The Real World. Your Paradigm Is About To Be Shattered! Plus - Free Energy Secrets, Renewable

Thanks to Wikipedia:  Many-worlds interpretation

The opinion of scientists about parallel universe - Many-worlds interpretation The opinion of scientists about parallel universe - Many-worlds interpretation Reviewed by beyond science on tháng 2 17, 2018 Rating: 5

Không có nhận xét nào:

Được tạo bởi Blogger.